The secure communication in reconfigurable intelligent surface-aided cell-free massive MIMO system is investigated with lowresolution ADCs and with the existence of an active eavesdropper. Specifically, an aggregated channel estimation approach is applied to decrease the overhead required to estimate the channels. Using the available imperfect channel state information (CSI), the conjugate beamforming and random beamforming are applied at the APs and the RIS for downlink data transmission, respectively. The closed-form expression of the achievable secrecy rate is acquired to appraise the achievable secrecy performance using only the channel statistics. With the achievable analytical results, the impacts of the quantization bit of ADCs, channel estimation error, the number of RIS elements, and the number of the APs can be unveiled. Aiming to maximize the minimum achievable rate of all legitimate users subject to security constraints, the power control optimization scheme is first formulated. To tackle this nonconvex property of the proposed optimization problem, a path-following algorithm is then utilized to solve the initial problem with continuous approximations and iterative optimization. Numerical results are presented to verify the achieved results along with availability of the presented power allocation approach.
Loading....